Towards a global high resolution peatland map in 2020

Alexandra Barthelmes, Hans Joosten, Cosima Tegetmeyer, Karen-Doreen Barthelmes, Rene Dommian, Olga Margalef

Peatland Studies & Palaeo-ecology group (Greifswald University, Germany)
Peatlands occur all over the World and large areas are drained.
Drainage has severe environmental effect:

- Flooding due to land subsidence
- Soil degradation and erosion
- Peat fire
- Huge GHG emissions
Global CO$_2$ emissions from drained peatlands: ~ 2 Gt/yr

= 5% of all anthropogenic CO$_2$, but drained peatlands cover only 0.3% of the global land area

Land use emission Hot Spot!

Recently recognized in international policy (e.g. UNFCCC, EU, FAO, RAMSAR, ...)

GHG emissions:
Mitigation of peatland GHG emission requires data...

- ... on the extent of peatlands (including abandoned areas)
- ... differentiated for drainage depth/intensity
- ... differentiated for land use types (forestry, agriculture, peat cutting, ...)

But this kind of peatland data is very scarce!
Peatland mapping faces several problems:

- Terms, concepts, definitions and resolution of data (very) far from being uniform across the Globe
- Available maps often lack detailed information on survey methods
- Peatlands are fragmented by land use: high resolution mapping needed
- Peatlands are diverse - extrapolation of approaches often difficult
- Properly analysed & geo-referenced soil profiles from peatlands are rare
- ...
Peatland mapping faces several problems:

Floated lowlands of Africa

- Hydromorphic soils often not separated into mineral and organic in soil mapping
- Especially in remote areas with difficult access, or the exposure to diseases or predators

- Still fragmentary ecological knowledge for vast areas
FAO (2014): summarized the future of peatland mapping

‘Future global peatland mapping systems should be based on aggregated data from local and national peat information (...).’

‘The first step (...) would be a complete inventory of the available national and global peatland information.’

L. Montanarella
Such an inventory started several years ago: in the IMCG Global Peatland Database.
The IMCG Global Peatland Database...

... coordinated by the Greifswald Mire Centre (Greifswald, NE-Germany)

... largest database of distribution and status of peatlands for all countries of the World.

... is a continuously developing & improving database of digital peatland, organic soil and peatland proxy data per country or region.

... has a broad variety of data collected, incl. regional GIS data.

(AFRICA: currently ~8,000 digital files in ~ 600 folders ~ 20 GB)
Global Peatland Database - mapping related activities

A. Collection of available geospatial peatland or proxy datasets
 (e.g. organic and hydromorphic soils, wetlands, vegetation, geology, ...)

 • evaluation of completeness and accuracy

 • evaluation of underlying terms, definitions and concepts

 • identification of restrictions and conflicts within and between datasets

B. Peatland mapping for countries without geospatial peatland data
Countries of East Africa with considerable amount of peatlands

- Ethiopia
- Uganda
- Burundi
- Rwanda
- Kenya
- Tanzania
- Zambia
- Malawi
- Mozambique
Global Peatland Database - peatland mapping

- **Vector GIS** (1:25,000) and **Raster GIS** (1 x 1 km grid cells)

- mapping of *confirmed*, *probable*, and *possible* peatland areas (depending on the reliability of the integrated data)

- **assessment of drainage/degradation status based on satellite images** (no, low, heavy drainage/degradation)

- attached database with additional information (e.g. peat depth, peat carbon content, vegetation, peatland type, ...)

1. Diverse ‘ground truthing’ points from scientific literature
 (palaeo-ecology, pedology, geology, ...) and from
 governments, NGO’s, companies, ...

2. Existing models of landscape constraints
 (Digital Elevation Models, Topogr. Wetness Index, Climate Phenology, ...)

3. Lower resolution peatland, soil or proxy maps
 (e.g. wetlands, vegetation, geology, geomorphology, ...)

4. Data integration = manually drawn PEATLAND map
 (using QGIS, Google Maps and Bing Aerial; balancing conflicting information, quality control)

5. Status assessment for each PEATLAND polygon

- not drained
- drained/degrading
Global Peatland Database - mapping peatlands of Uganda

Example for data integration: valleys southeast of Lake Kyoga
Global Peatland Database - mapping peatlands of Uganda

Africa Soil Information Service - Map Tool

AfSIS homepage: downloadable Topographic Wetness Index
Global Peatland Database - mapping peatlands of UGANDA

Example for data integration: valleys southeast of Lake Kyoga

Blue: *peat point data* (National Survey for Energy Peat, 2004)

Blue: available legacy soil maps indicate *Fluvisols or Gleysols*
Global Peatland Database - mapping peatlands of UGANDA

Example for data integration: valleys southeast of Lake Kyoga

Blue: *peat point data* (National Survey for Energy Peat, 2004)

Topographical Wetness Index (AfSIS): high TWI in red & darker blue

Orange: drawn peatland polygons
Global Peatland Database - mapping peatlands of UGANDA

- peat point data (blue dots) = confirmed

- main valley polygons with peat point data = probable peatland areas

- smaller valleys without peat point data in this region, but with:
 • the same geomorphological setting
 • the same indication from landscape constraints
 • the same appearance on satellite images = possible peatland areas

Orange: drawn peatland polygons
Reliability of peatland occurrence assessed with decision tree: *(confirmed, probable, possible)*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Presence of mineral soil directly and spatially explicitly designated</td>
</tr>
<tr>
<td>1*</td>
<td>Not so</td>
</tr>
<tr>
<td>2.</td>
<td>Presence of organic soil (peat, Histosol, muck soil, bog soil, organic soil) directly and spatially explicitly designated</td>
</tr>
<tr>
<td>2*</td>
<td>Not so</td>
</tr>
<tr>
<td>3.</td>
<td>Area represented by a separate ‘peatland’ mapping unit on a high quality i and (preferentially) high resolution (≤ 1: 125.000) map</td>
</tr>
<tr>
<td>3*</td>
<td>Not so</td>
</tr>
<tr>
<td>4.</td>
<td>Presence of peat near the surface spatially explicitly specified for a (few) single core(s) but not for an area</td>
</tr>
<tr>
<td>4*</td>
<td>Not so</td>
</tr>
<tr>
<td>5.</td>
<td>Maps (vegetation, land use, geomorphology, other) indicate that land around the peat core(s) is or has been a wetland iii</td>
</tr>
<tr>
<td>5*</td>
<td>Not so</td>
</tr>
<tr>
<td>6.</td>
<td>Homogenous area surrounding and including the core locality(s) can clearly be delineated with Google Maps iv</td>
</tr>
</tbody>
</table>
Global Peatland Database - mapping peatlands of UGANDA

Mountains of SW Uganda
Global Peatland Database - mapping peatlands of UGANDA

Valleys/bottomlands in SW Uganda
Global Peatland Database - mapping peatlands of UGANDA

Red/darker blue: areas with high Topographic Wetness Index
Global Peatland Database - mapping peatlands of UGANDA

Blue: areas with ‘Papyrus peat’ (legacy soil map)
Orange: Peatland areas deduced due to integration of diverse information.
ITEM: 537
Reliability of peatland occurrence: confirmed

Drainage status: no

Reliability information: 'Papyrus peat‘ according to reference

Each polygon of the peatland map gets at least the entries as shown.
Peatland status: „no drainage/degradation“

- drainage: no
- agriculture: no
Peatland status: „low drainage/degradation“

- **drainage**: small scale drainage without connection to main outlet or only few drainage channels with connection to main outlet

- **agriculture**: predominantly subsistence fields (often irregular structures)
IMCG Global Peatland Data Base

Peatland status: heavy drainage/degradation

- drainage: intensive and well maintained drainage system connected to main outlet, with a dense net of drainage channels (often regular)

- agriculture: industrial and high output agriculture

© Google Satellite 2013
~ 60% ‘confirmed’ and ‘probable’ peatland polygons
Global Peatland Database - mapping peatlands of RWANDA

Another output: raster maps of peatland drainage/degradation (% of grid cells 1 x 1 km²)
We offer our expertise,

- to develop regional and peatland type adapted models to indicate them, based on Digital Elevation Models, Topographic Soil Wetness, Climate Phenology, Landforms, Hydrology, ...

- for interpreting legacy soil maps regarding peatland occurrence

We invite you,

- to share your soil science expertise...
... to get peatland emissions integrated in the Post-Kyoto Climate Agreement (UNFCCC)!